9-0X0-6-0XA-1-AZABICYCLO[5.2.0] NON-4-EANES, BY-PRODUCTS ARISING IN THE TOTAL SYNIHESIS OF CLAVULANIC ACID ANALOGUES

By Peter H. Bentley*, Gerald Brooks, Martin L. Gilpin, Fric Hunt and Iskander I. Zomaya.
Beecham Pharmaceuticals Research Division, Brockham Park, Betchworth, Surrey, Fingland
We have recently described ${ }^{1}$ the total syntheses of the natural β-lactamase inhibitor, clavulanic acid $(1)^{2}$, and some of its analogues. We now wish to report the isolation of novel 9-oxo-6-oxa-1-azabicyclo[5.2.0]non-4-enes (4) during the course of aimilar reactions.

In one series of anslogues, (3 a) and its geometric isomer were synthesised by base-induced cyclisation of the chloroketone (2a) ${ }^{1 c}$. In an extension of this series, the chloroketones (2b) and (2c) were prepared by the general scheme A. ${ }^{4}$ Gyclisation ($\mathrm{K}_{2} \mathrm{CO}_{3}$ - IMF) of (2b) gave the analogue (3b), as the only bicyclic product (77\%), whereas (2c) gave, in addition to (3c) (11\%), the novel bicyclononene (4c) in 41% yield. Clearly (4c), which was surprisingly stable considering the presence of the sensitive acylketene acetal functionality, arises via enolisation involving the ester carbonyl group in (2c). (4c) could be hydrogenolysed (THF, 10% Pd-C, 1 hr) to the lactone (5) (63\%).

Bicyclononenes of type (4) had previously been encountered, less surprisingly, during the cyclisation of β-diketones such as (2d) and (2e) and the α, γ-diketo ester ($2 f$), each prepared according to scheme A or B, by analogy. 4, 5 Treatment of (2d) with $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MF}$ provided the desired analogue (3d) (13\%), ${ }^{6}$ together with the bicyclononene (4d) (5\%). Similarly (2e) led to anslogue ($3 e$) (44%) and ($4 e$) (9%), and ($2 f$) gave ($3 f$) (3%) and ($4 f$) (8%). Supportive evidence for structures (4) and (5) comes from spectral data, some of which is presented in the Table. In addition the ${ }^{13} \mathrm{C}-\mathrm{n} . \mathrm{m} . \mathrm{r}$. spectrum of (4 c) (in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$) had resonanoes at $823.4,26.9\left(\mathrm{CH}_{3}\right), 44.7(\mathrm{CB}), 66.5(\mathrm{C} 2), 70.5\left(\mathrm{CH}_{2} 0\right), 80.2(\mathrm{C} 7), 102.5(\mathrm{C} 4), 126.7-136.6$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 162.9,164.1$ ($\mathrm{C} 5, \mathrm{c}, \mathrm{C}$) and $195.9 \mathrm{ppm}(\mathrm{C} 3)$.

Table

	(4c)	(4d)	(4e)	(4f)	(5)
$\lambda_{\text {max }} \mathrm{nm}$ EtOH (e)	279 (11240)	268 (11900)	282 (10270)	-	291 (8400)
$\begin{aligned} & \nu \mathrm{CHCl}_{3} \mathrm{om}^{-1} \mathrm{C}=0 \text { (Lactam) } \\ & \mathrm{C}=0 \text { (Other) } \\ & \mathrm{C}=\mathrm{C} \end{aligned}$	$\begin{aligned} & 1773 \\ & 1640 \\ & 1565 \end{aligned}$	$\begin{aligned} & 1780 \\ & 1660 \\ & 1615 \end{aligned}$	$\begin{aligned} & 1772 \\ & 1675 \\ & 1645 \end{aligned}$	$\begin{aligned} & 1790 \\ & 1750,1675 \\ & 1620 \end{aligned}$	$\begin{aligned} & 1769 \\ & 1739 \end{aligned}$
$\begin{array}{ll} 8 \mathrm{CDCl}_{3} \mathrm{ppm} & \begin{array}{c} \mathrm{C} 4-\mathrm{H} \\ \mathrm{C} 5-\mathrm{H} \\ \mathrm{C} 7-\mathrm{H} \end{array} \\ & \\ \mathrm{M}^{+} \text {(Found) } & \end{array}$	$\begin{gathered} - \\ - \\ 5.50 \text { da } \\ J 3.5,1.5 \\ 363 \end{gathered}$	$\begin{gathered} 5.24 \mathrm{~B} \\ - \\ 5.47 \mathrm{dd} \\ \mathrm{~J} 3,1.5 \\ 167.0583 \end{gathered}$	$\begin{gathered} - \\ - \\ 5.63 \mathrm{br} \\ 243.0899 \end{gathered}$	$\begin{gathered} 6.34 \mathrm{~s} \\ - \\ 5.66 \mathrm{br} \\ 211.0483 \end{gathered}$	$\begin{gathered} 5.49 \mathrm{a} \\ - \\ 6.20 \mathrm{br} \\ 273.0994 \end{gathered}$

(1)

(2)

(3)

(4)

(5)
(2), (3) a; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=0 \mathrm{Me}$
(2), (3) b; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{H}^{4}=\mathrm{OCH}_{2} \mathrm{Ph}$
(2), (3), (4) c; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ph}, \mathrm{R}^{4}=\mathrm{OCH}_{2} \mathrm{Ph}$
(2), (3), (4) $d ; R^{1}=R^{2}=R^{3}=H, R^{4}=\mathrm{Ne}$
(2), (3), (4) e; $R^{1}=R^{2}=耳 R^{3}=M e, R^{4}=P h$
(2), (3), (4) f; $R^{1}=R^{2}=R^{3}=H, R^{4}=\mathrm{CO}_{2} \mathrm{Me}$

Schemes A and B

Reagents: i, $\mathrm{NaH}, \mathrm{BrC}\left(\mathrm{R}^{1} \mathrm{R}^{2}\right) \mathrm{CO}_{2} \mathrm{Me}$; ii, $\mathrm{NaOH}, \mathrm{MeOH}$; iii, $\mathrm{Ph}_{2} \mathrm{P}(0) \mathrm{Cl}$, base
iv, $\mathrm{PhCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ or $\mathrm{EtCOPh}, \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2} ; \quad \mathrm{V}, \mathrm{Cl}_{2}, \mathrm{CCl}_{4}$
vi, $\mathrm{NaH}, \mathrm{BrCH}_{2} \mathrm{COCH}_{2} \mathrm{COR}^{4}$.

References and Notes

1. (a) P.H. Bentley, P.D. Berry, G. Brooks, M.L. Gilpin, E. Hunt and I.I. Zomaya, J.C.S. Chem. Comm., 1977, 748; (b) P.H. Bentley, G. Brooks, M.L. Gilpin and E. Hunt, ibid, 1977, 905; (c) E. Hunt, P.H. Bentley, G. Brooks and M.L. Gilpin, ibid, 1977, 906; (d) P.H. Bentley and E. Hunt, ibid, 1978, 436 and 518.
2. T.T. Howarth, A.G. Brown and T.J. King, J.C.S. Chem. Comm., 1976, 266.
3. All new compounds had satisfactory spectral and analytical date.
4. Scheme A is based on an earlier successful route (ref. 1b) in which the methyl eater enolate of (7) ($\left.\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)$ was acylated with various acid chlorides to generate the desired β-ketoesters. Here (7) is used to acylate ester and ketone enolates.
5. Scheme B is based on an earlier successful route (ref. 1c) in which azetidinone (6) was alkylated with mathyl γ-bromoacetoacetate.
6. The geometric isomer of (3d) (2\%) and a vinyl chloride (see ref. 1c) (5\%) were also isolated.
